Generic selectors
Exact matches only
Search in title
Search in content

Mesoscale Data Fusion to Map and Model the U.S. Food, Energy, and Water (FEW) System

The Food, Energy, and Water (FEW) system is complex, vulnerable to societal and environmental changes, yet critical for national well-being. This project's major contribution is to create and exploit the first detailed mapping of the Food, Energy, and Water System of the United States.

Principal Investigators:

Sponsor(s):

Abstract:

The Food, Energy, and Water (FEW) system is complex, vulnerable to societal and environmental changes, yet critical for national well-being. This project’s major contribution is to create and exploit the first detailed mapping of the Food, Energy, and Water System of the United States. Using this capability will improve understanding of how local Food, Energy, and Water policy decisions and technologies cause ripple effects throughout the system (for example, how electricity usage in an American city affects rivers hundreds of miles away). Policies and technologies often pose trade-offs between Food, Energy, and Water systems, and this project is measuring those trade-offs so costs and benefits may be understood and balanced in future decisions. By studying how past events like droughts, storms, wars, or economic crises have affected the nation’s Food, Energy, and Water System, this project is developing the capacity to anticipate the impacts of future events.

The project provides an empirical basis for advances in theory and scientific modeling of the complete food-energy-water (FEW) system of the United States. The system is primarily composed of mesoscale phenomena in which regional trade, river basins and aquifers, irrigation districts, crop belts, states, tribes, counties and cities, power grids, climate gradients, and seasonal timescales interact in a dynamic, inter-connected coupled natural-human system. To advance understanding of these interactions, a reliable and complete empirical description of the FEW system is needed. This requires a dataset containing consumption, production, and bilateral trade data for the United States, with sub-county resolution. A retrospective version of this dataset (containing data from the mid-20th century to the present), will serve as a model network for the FEW system’s emergent performance metrics, sustainability metrics, and supply-chain teleconnections, along with observed historical dynamics of system response, vulnerability, and resilience to stresses and shocks. A wide range of diverse and disparate (but mostly pre-existing) economic, climate, and environmental data will be assembled to create the first comprehensive empirical map of the U.S. Food, Energy, and Water system (the FEWSion v1.0-US database). This capability will then be used to achieve four high-value science and modeling objectives: (1) quantify the multiple-objective trade-offs between performance and sustainability metrics, (2) analyze historical sensitivity, vulnerability, resilience, and evolution of the FEW network with attribution to observed stresses and shocks, (3) establish the role of cities within the FEW system, and (4) provide a standards-based benchmarking assessment capability that can be used by other projects awarded under Track 1 (FEW System Modeling) and Track 3 (Research to Enable Innovative System Solutions) of this INFEWS solicitation. A public online educational tool uses this information to visualize how individual and local decisions create environmental footprints, and how those decisions create impacts throughout the food, energy, and water system.

View More Information >

Articles produced by this research:

No articles have been produced thus far